THz gas spectroscopy

MINOSHIMA Intelligent Optical Synthesizer

(1) <u>Rotational transitions of polar molecules</u>

- ✓ Rich spectral fingerprints
- ✓ High selectivity and high sensitivity
- High discrimination at low pressure due to narrow Doppler linewidth (~1MHz) <u>Atmospheric pollution</u>
 Multiple gas analysis

ERATO

(2) Less scattering

 λ_{THz} >> particle diameter

 Possible to analyze gas
 mixed with aerosols
 (fog, cloud, smoke, soot, etc)

Ref)http://www.nature.nps.gov/air/aqbasics/sources.cfm

ERATO MINOSHIMA Intelligent Optical Synthesizer

THz spectral fingerprints

Atmospheric gas molecule -og of absorption coefficeint (1/m) -2 dry air vapor 02 03 -4 H20 CIO co -6 HC HCN HO2 -8 HOC N20 NH3 NO 10 NO2 OH SO2 12 14 -16 2.5 0.5 1.5 2 Frequency (THz)

To discriminate the target gas correctly, high resolution, high accuracy, and broadband spectrum are required!!

3

MINOSHIMA Intelligent Optical Synthesizer

ERATO

Optical comb & THz comb

and absolute frequency calibration

MINOSHIMA Intelligent Optical Synthesizer

ERATO

How to measure THz comb

Traditional THz-TDS equipped with mechanical time-delay scanning

No need for mechanical timedelay scanning
No limitation on size of time window

ref) Appl. Phys. Lett. 87, 061101 (2005).

Time scale of ps THz pulse is linearly expanded to µs order

Temporal magnification factor (TMF) = $\frac{f_{rep1}}{\Delta f_{ren}}$ ERATO

Use of **free-running**, dual fs lasers in dual THz comb spectroscopy

Expand the application fields of dual THz comb spectroscopy

However, timing jitter between free-running dual fs lasers distort the linearity of time and frequency scales due to fluctuation of TMF! MINOSHIMA Intelligent Optical Synthesizer

ERATO

Influence of timing jitter in ASOPS

Adaptive sampling method

Adaptive clock can be generated by beat signal between dual THz combs!!

ERETO (HINOSHIMA Intelligent Optical Synthesizer

Beat signal between dual THz combs for adaptive sampling clock

ERATO

Experimental setup to extract the beat signal between dual THz combs

ERATO

Setup for dual THz combs spectroscopy

Integrated Temporal Waveform of 10 THz pulses

Integration number : 10000

Constant clock f_{rep1}& f_{rep2} free-running

Constant clock $f_{rep1} \& f_{rep2}$ stabilized

Adaptive clock f_{rep1} & f_{rep2} free-running

12

MINOSHIMA Intelligent Optical Synthesizer

ERATO

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Absorbance

Acetonitrile gas at low pressure(1kPa)

Acetonitrile (CH₃CN)

One of VOCs

18.4 GHz

0.4

 Very abundant species in interstellar medium

Constant clock

f_{rep1} & f_{rep2} stabilized

0.6

ERATO

Frequency [THz]

0.8

Summary

MINOSHIMA Intelligent Optical Synthesizer

TATAT

- 1. Dual THz comb spectroscopy was attained using free-running dual fs lasers.
- Spectroscopic performance:
 Adaptive sampling with free-running dual lasers
 ≧Constant sampling with stabilized dual lasers
- 3. Possible to perform precision spectroscopy of low-pressure gas molecule using free-running dual fs lasers